EXAMPLE 5.4

Built-Up Floor Girder Design

Given

Loads

Floor live load	$=40 \mathrm{psf}$
Floor dead load	$=10 \mathrm{psf}$
Required girder span (support column spacing)	$=14 \mathrm{ft}$
Joist span (both sides of girder)	$=12 \mathrm{ft}$
Species	$=$ Southern Pine, No. 1
Maximum girder depth	$=12$

Find \quad Minimum number of 2×10 s or $2 \times 12 \mathrm{~s}$ required for the built-up girder.

Solution

1. Calculate the design load

$$
\mathrm{W}=(\text { Trib. floor joist span })(\mathrm{D}+\mathrm{L})=(12 \mathrm{ft})(40 \mathrm{psf}+10 \mathrm{psf})=600 \mathrm{plf}
$$

2. Determine tabulated design values (NDS-S Table 4B)
$\mathrm{F}_{\mathrm{b}}=1250 \mathrm{psi}$
$\mathrm{F}_{\mathrm{C} \perp}=565 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=90 \mathrm{psi}$
$\mathrm{E}=1.7 \times 10^{6} \mathrm{psi}$
3. Lumber property adjustments (Section 5.2.4):

$\mathrm{C}_{\mathrm{r}}=1.2$ (Table 5.4)	$\mathrm{C}_{\mathrm{D}}=1.0$
$\mathrm{C}_{\mathrm{F}}=1.0$	$\mathrm{C}_{\mathrm{b}}=1.0$
$\mathrm{C}_{\mathrm{H}}=2.0$	$\mathrm{C}_{\mathrm{L}}=1.0$

(compression flange laterally braced by connection of floor joists to top or side of girder)

$$
\begin{array}{lll}
\mathrm{F}_{\mathrm{b}}^{\prime} & =\mathrm{F}_{\mathrm{b}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{r}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{L}} & =1,250 \mathrm{psi}(1.0)(1.2)(1)(1) \\
\mathrm{F}_{\mathrm{V}}, & =1,500 \mathrm{psi} \\
\mathrm{~F}_{1} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{H}} & =90 \mathrm{psi}(1.25)(2.0) & =225 \mathrm{psi} \\
\mathrm{~F}_{\mathrm{c} \perp}^{\prime} & =\mathrm{F}_{\mathrm{c} \perp} \mathrm{C}_{\mathrm{b}} & =565 \mathrm{psi} \\
\mathrm{E}^{\prime} & =\mathrm{E} & =565 \mathrm{psi}(1) \\
& & =1.7 \times 10^{6} \mathrm{psi}
\end{array}
$$

4. Determine number of members required due to bending

$$
\begin{aligned}
\mathrm{M}_{\max } & =\frac{\mathrm{w} \ell^{2}}{8}=\frac{(600 \mathrm{plf})(14 \mathrm{ft})^{2}}{8}=14,700 \mathrm{ft}-\mathrm{lb} \\
\mathrm{f}_{\mathrm{b}} & =\frac{\mathrm{M}}{\mathrm{~S}}=\frac{(14,700 \mathrm{ft}-\mathrm{lb})(12 \mathrm{in} / \mathrm{ft})}{\mathrm{S}}=\frac{176,400}{\mathrm{~S}} \\
\mathrm{f}_{\mathrm{b}} & \leq \mathrm{F}_{\mathrm{b}} \\
\frac{176,400}{\mathrm{~S}} & \leq 1,500 \mathrm{psi} \\
\mathrm{~S}_{\mathrm{x}} & =118 \mathrm{in}^{3}
\end{aligned}
$$

Using Table 1B in NDS-S

$$
\begin{array}{ll}
52 \times 10 \mathrm{~s} & \mathrm{~S}=5(21.39)=107<118(\text { marginal, but } 5 \text { too thick }) \\
42 \times 12 \mathrm{~s} & \mathrm{~S}=4(31.64)=127>118(\mathrm{OK})
\end{array}
$$

5. Determine number of members required due to horizontal shear

$$
\begin{aligned}
& \mathrm{V}_{\text {max }}=\frac{\mathrm{w} \ell}{2}=\frac{600 \mathrm{plf}(14 \mathrm{ft})}{2}=4,200 \mathrm{lb} \\
& \mathrm{f}_{\mathrm{v}}=\frac{3 \mathrm{~V}}{2 \mathrm{~A}}=\frac{3}{2}\left(\frac{4200}{\mathrm{~A}}\right)=6,300 \mathrm{lb} / \mathrm{A} \\
& \mathrm{f}_{\mathrm{v}} \quad \leq \mathrm{F}_{\mathrm{v}}{ }^{\prime} \\
& \frac{6,300 \mathrm{lb}}{\mathrm{~A}} \leq 225 \mathrm{psi} \\
& \begin{array}{lll}
\mathrm{A} & 2 & 2 \times 12 \mathrm{~s} \\
2 & 2 \times 10 \mathrm{~s}
\end{array} \quad \begin{array}{ll}
\mathrm{in} & \mathrm{~A}=33.8>28 \text { OK } \\
& \mathrm{A}=27.8 \approx 28 \text { OK }
\end{array}
\end{aligned}
$$

6. Determine required bearing length using $42 \times 12 \mathrm{~s}$

$$
\begin{aligned}
\mathrm{R}_{1} & =\mathrm{R}_{2}=\mathrm{V}_{\max }=4,200 \mathrm{lb} \\
\mathrm{f}_{\mathrm{c} \perp} & =\frac{\mathrm{R}}{\mathrm{~A}_{\mathrm{b}}}=\frac{4,200 \mathrm{lb}}{(6 \mathrm{in})\left(\ell_{\mathrm{b}}\right)}=\frac{700}{\ell_{\mathrm{b}}} \\
\mathrm{f}_{\mathrm{c} 1} & \leq \mathrm{F}_{\mathrm{c} \perp} \\
\frac{700}{\ell_{\mathrm{b}}} & \leq 565 \mathrm{psi} \\
\ell_{\mathrm{b}} & =1.24 \text { in (OK) }
\end{aligned}
$$

7. Determine member size due to deflection

$$
\begin{aligned}
& \rho_{\max }=\frac{5 \mathrm{w} \ell^{4}}{384 \mathrm{EI}}=\frac{5(480 \mathrm{plf}) *(14 \mathrm{ft})^{4}\left(1,728 \mathrm{in}^{3} / \mathrm{ft}^{3}\right)}{384 \mathrm{EI}}=\frac{4.15 \times 10^{8}}{\mathrm{EI}} \\
& \text { *includes } 40 \mathrm{psf} \text { live load only } \\
& \rho_{\text {all }} \quad \leq \ell / 360=14 \mathrm{ft}(12 \mathrm{in} / \mathrm{ft}) / 360=0.47 \mathrm{in} \\
& \rho_{\text {max }} \quad \leq \rho_{\text {all }} \\
& \frac{4.15 \times 10^{8}}{\mathrm{EI}}=0.47 \mathrm{in} \\
& \text { EI } \quad=8.8 \times 10^{8} \\
& \left(1.7 \times 10^{6}\right)(\mathrm{I})=8.8 \times 10^{8} \\
& \mathrm{I}=519 \mathrm{in}^{4} \\
& 32 \mathrm{x} 12 \mathrm{~s} \quad \mathrm{I}=534>519 \text { okay }
\end{aligned}
$$

